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Summary. Singlet oxygenation of cyclooctene gives 2-cyclooctenyl hydropercx®ie
which afiords isomeric 2, .ci_s-10—dibromo-8,9—dioxabicyclo[_5.2.1]deca.nes on treatuent
with mercury(II) trifluoroacetate then bromine, and yields cis-10-bromo-8,9~
dioxabicyclo[5.2.ﬂ decane on treatment with bromine then silver trifluorocacetate.

Recently we described the preparation of 8,9-dioxabicyclo[5.2.ﬂdeca.ne (1) vy
the peroxymercuration and reduction ot 1,4~cyclooctadiene.
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This bicyclic peroxide is of interesi because it is the first isolated homologue ot
the 2,3—dioxabicyclo[2.2.ﬂheptane nucleus of prostaglandin endoperoxides to contain
the novel feature of a strain-free 1,2-dioxacyclopentane ring. We now wish to
report two new methods for generating the B,9-dioxabicyclo[5.2.1 decane system that
both employ the more readily available starting material cyclooctene. BEach route
involves three simple reactions and affords a product that has the new feature of
containing a bromine substituent on the methylene bridge, thereby providing a
potential capability for structural elaboration at this position.

The first step in each method is the conversion of cyclooctene into
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2-cyclooctenyl hydroperoxide (2). This has been achieved previously by autoxidation,
but a mixture of products was obtained.2 We have found that tetraphenylporphine-
sensitized photooxygenation of cyclooctene in dichloromethane for 9h followed by
flash chroma'tc_;gz:a.ploqr3 on silica gel affords an analytically pure product in a yield

of about 10%.%
TPP OOH

2

Treatment of 2 with mercury(II) trifluoroacetate in dichloromethane at o,
followed by bromodemercuration in situ yielded a mixture containing two peroxidic
products (TLC). Isolation by preparative HPLC afforded, in order of elution, the
eis-2, cig-10-dibromo-8,9-dioxabicyclo ES 2. 1] decane 3 (O 6%; m.p. 6600) and
trans-2, cis-10-dibromo-8,9-dioxabicyclo [5 2. 1:] jecane 4 (2.T%; m.p. 77°C), which
were identified by a combination of elemental analysis, mass spectrometry, and H and

proton-decoupled 130 NMR spec't;roaco;py.5
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The stereochemical assignments for 3 and 4 are based on their 1E NMR Spectra..5 In
particular the observation for both isomers that the coupling conatants Ja.m and Ja.n
are small (1-3Hz) rules out a M—mangement for the bromine at the 1O-posi'tion.1
It appears that allylic mercuration® to give 2-trifluoroacetoxymercurio-3-
cyclooctenyl hydroperoxide (6), presumably as a mixture of cis- and irans-isomers,
is preferred to the disfavou.red7 S5-endo-cyclization that would afford 10-trifluoro-
acetoxymercurio-8,9~dioxabicyclo E5.2.ﬂ decane (5). Mercury salt-induced 5-exo-
cyclization then provides the organomercury precursor (7) of compounds 3 and 4.
Bicyclic peroxides with a trans-10-substituent could be formed in the cycloperoxy-

mercuration a.nd/or in the bromodemercuration, but none were detected in the final

product.
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Alternatively, treatment of 2 with bromine in dichloromethane at O°C yielded

a mixture of diastereoisomeric 2,3-dibromocyclooctyl hydroperoxides (8), in the

ratio of about 2:1 as judged from the intensity of the 130 NMR signals (b 86.41 and
82.12) assigned to the carbons bearing the BOO group. Ring closure with silver
trifluoroa.cetatea’9 gave, after isolation by preparative HPLC, 4.3% of cis-10-bromo-
8,9-dioxabicyclo E5.2.ﬂ decane (9) as a colourless viscous oil that slowly crystallised

at 0%.10
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The cis-arrangement of the bromine substituen: and the peroxide bridge in 9

9

is assumed on the basis of irans-bromination and then inversion of configuration
in the dioxabicyclization.9 Overlap of the CHBr and bridgehead H signals in the
100 MHZ 1H NMR spectrum prevented a determination of the vicinal coupling constant
that would confirm this stereochemistry.

Both reaction sequences employed in these new routes to 8,9-dioxabicyclo~
E.2.D decane derivatives could conceivably give rise also to formation of bicyclic

6,11 These were not detected but they would not be expected to survive

dioxetanes.
the conditions under which our products were isolated.

Of the two routes reported here, the sequence of singlet oxygenation,
bromination, and silver salt-induced dioxabicyclization is probably the more valuable
since it proceeds stereospecifically and introduces only one bromine substituent.
Furthermore the silver salt-assisted cyclization has previously proved successful

1 and 2,3-dioxabicyclo~

in the preparation of sensitive peroxides such as dioxetanes
E2.2.1:| hep‘l:a.ne.9 We are therefore investigating the generality of this methoa
for converting cycloalkenes into dioxabicycloEl.Z.ﬂ alkanes containing a bromo-

methylene bridge.
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